

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1149-1151

Stereoselective synthesis of polytetrahydropyrans

Pilar Canoa, Nuria Vega, Manuel Pérez, Generosa Gómez*, Yagamare Fall*

Departamento de Química Orgánica, Facultad de Química, Universidad de Vigo, 36200 Vigo, Spain Received 30 November 2007; accepted 11 December 2007

Abstract

We describe a stereoselective synthesis of a bistetrahydropyran ring system with the same *trans–syn–trans* stereochemistry as is found in the marine polyether ladder yessotoxin.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Oxacyclic compounds; Toxins; Singlet oxygen; Tetrahydropyrans; Stereoselective synthesis

Yessotoxin 1 is a disulfated polycyclic ether that is produced by the dinoflagellate *Proteceratium reticulatum*¹ and has been isolated from the digestive glands of the scallop *Patinopecten yessoensis*.² Due to its highly complex architecture and very interesting biological properties, which include modulation of cytosolic calcium levels in human lymphocytes³ and cytotoxicity against human tumor cell lines,⁴ yessotoxin has attracted the attention of synthetic chemists⁵ (Fig. 1).

In recent years we have developed a new method for the synthesis of oxacyclic compounds from either methoxyallene or furan.⁶ We have applied this method to the synthesis of chiral butenolides,^{7a} natural products,^{7b} and polyoxepanes.^{7b} Here we report its extension to the stereoselective synthesis of linear polytetrahydropyrans with a view to the eventual synthesis of yessotoxin.

Scheme 1 shows the synthesis of trans-fused bistetrahydropyrans 3 and 4. The 2,3-trans-disubstituted tetrahydropyran 6 was obtained from the commercially available furan 2 using a previously reported procedure.^{6d} Selective protection of its primary hydroxy group afforded 7^8 in 59% yield, and protection of this secondary alcohol

1: Yessotoxin

Fig. 1. Structure of Yessotoxin.

^{*} Corresponding authors. Tel.: +34 986 8123 20; fax: +34 986 8122 62 (Y.F.). *E-mail addresses:* ggomez@uvigo.es (G. Gómez), yagamare@uvigo.es (Y. Fall).

^{0040-4039/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.12.053

Scheme 1. Reagents and conditions: (i) Ref. 6d; (ii) TBSCl, Imid, DMAP, THF, rt (59%); (iii) TBDPSCl, Im, DMF, DMAP (94%); (iv) AcOH, THF, H₂O, 0 °C (96%); (v) TPAP, NMO, CH₂Cl₂, molecular sieves (61%); (vi) **11**, *n*-BuLi, THF, -78 °C (85%); (vii) H₂, Lindlar, MeOH (78%); (viii) (a) ¹O₂, MeOH, rose Bengal, *hv*; (b) Ac₂O, py, DMAP (96%, two steps); (ix) TBAF, THF, rt (60% **3**; 38% **4**).

gave a 94% yield of intermediate **8**.⁸ Selective removal of the TBS of **8** using a mixture of acetic acid, THF, and water then afforded a 96% yield of alcohol **9**,⁸ which was oxidized to aldehyde **10**⁸ in 61% yield using tetrapropylammonium perruthenate (TPAP). Treatment of **10** with the lithium derivative of alkyne **11** gave a mixture of epimeric propynyl alcohols **12**⁸ in 85% yield, and the hydrogenation of this mixture over Lindlar catalyst⁹ provided a mixture of diastereoisomeric (Z)-alkenes that when treated with

Fig. 2. NOE correlations for 3 and 4.

Scheme 2. Reagents and conditions: (i) LAH, BF₃·OEt₂ (84%); (ii) (a) TBDPSCl, Im, DMF, DMAP (65%), (b) TPAP, NMO, CH_2Cl_2 (68%); (iii) LAH, BF₃·OEt₂ (93%); (iv) (a) TBDPSCl, Im, DMF, DMAP (76%), (b) TPAP, NMO, CH_2Cl_2 (87%); (v) DBU, PhCH₃, 80 °C; (vi) NaBH₄, MeOH, CH_2Cl_2 , -78 °C (85%).

Fig. 3. NOE correlations for 19.

catalytic pyridinium *p*-toluene sulfonate (PPTS) gave the desired furan 13^8 in 78% yield. Oxidation of 13 with singlet oxygen, followed by a treatment with acetic anhydride in pyridine, afforded butenolide 14^8 in 96% yield (two steps), and the treatment of 14 with TBAF gave the tricyclic lactones 3^{10} and 4^{11} in 60% and 38% yield, respectively.

The stereochemistry of **3** and **4** was established using NOE experiments (Fig. 2).

With lactones **3** and **4** in hand, we aimed to prepare the bicyclic tetrahydropyran **5**, which has the *trans-syn-trans* stereochemistry found in yessotoxin (Scheme 2) and is ready for the addition of a further ring by the above method. To this end, lactones **3** and **4** were opened with LAH, affording diols **15** and **17**. Selective protection of the primary hydroxy groups of **15** and **17**, followed by the oxidation of the resulting secondary alcohols with TPAP, gave ketones **16** and **18**, the former of which was converted to the latter by epimerization with DBU in toluene at 80 °C.¹² Stereoselective reduction of **18** with sodium borohydride in methanol and dichloromethane at -78 °C then afforded the target alcohol **5**.

The relative stereochemistry of **5** was established by NOE experiments on the corresponding acetate, **19** (Fig. 3).

In conclusion, we have shown that the furan approach to oxacycles allows the stereoselective synthesis of a bicyclic tetrahydropyran with the *trans–syn–trans* stereochemistry of yessotoxin. Work is now in progress toward the enantioselective synthesis of polycyclic natural products using this approach.

Acknowledgements

This work was supported by grants from the Xunta de Galicia (PGIDIT04BTF301031PR) and the Spanish Ministry of Education and Science (CTQ2007-61788). The work of the NMR and MS divisions of the research support services of the University of Vigo (CACTI) is gratefully acknowledged.

References and notes

- (a) Satake, M.; MacKenzie, L.; Yasumoto, T. *Nat. Toxins* 1997, *5*, 164–167; (b) Satake, M.; Ichimura, T.; Sekiguchi, K.; Yoshimatsu, S.; Oshima, Y. *Nat. Toxins* 1999, *7*, 147–150; (c) Samdal, I. A.; Naustvoll, L. J.; Olseng, C. D.; Briggs, L. R.; Miles, C. O. *Toxicon* 2004, *44*, 75–82.
- (a) Murata, M.; Kumagai, M.; Lee, J. S.; Yasumoto, T. *Tetrahedron* Lett. **1987**, 28, 5869–5872; (b) Satake, M.; Terasawa, K.; Kadowaki, Y.; Yasumoto, T. *Tetrahedron Lett.* **1996**, 37, 5955–5958.
- de la Rosa, L. A.; Alfonso, A.; Vilariño, N.; Vieytes, M. R.; Botana, L. M. Biochem. Pharmacol. 2001, 61, 827–833.
- Konishi, M.; Yang, X.; Li, B.; Fairchild, C. R.; Shimizu, Y. J. Nat. Prod. 2004, 67, 1309–1313.
- (a) Mori, Y.; Hayashi, H. Tetrahedron 2002, 58, 1789–1797; (b) Suzuki, K.; Nakata, T. Org. Lett. 2002, 4, 3943–3946; (c) Kadota, I.; Ueno, H.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 8935–8938; (d) Mori, Y.; Takase, T.; Noyori, R. Tetrahedron Lett. 2003, 44, 2319– 2322; (e) Oishi, T.; Watanabe, K.; Murata, M. Tetrahedron Lett. 2003, 44, 7315–7319; (f) Watanabe, K.; Suzuki, M.; Murata, M.; Oishi, T. Tetrahedron Lett. 2005, 46, 3991–3995; Kadota, I.; Ueno, H.; Sato, Y.; Yamamoto, Y. Tetrahedron Lett. 2006, 47, 89–92.
- (a) Fall, Y.; Gómez, G.; Fernández, C. Tetrahedron Lett. 1999, 40, 8307–8308; (b) Fall, Y.; Vidal, B.; Alonso, D.; Gómez, G. Tetrahedron Lett. 2003, 44, 4467–4469; (c) Pérez, M.; Canoa, P.; Gómez, G.; Teijeira, M.; Fall, Y. Synthesis 2005, 411–414; (d) Alonso, D.; Pérez, M.; Gómez, G.; Covelo, B.; Fall, Y. Tetrahedron 2005, 61, 2021–2026.
- (a) Teijeira, M.; Suárez, P. L.; Gómez, G.; Terán, C.; Fall, Y. *Tetrahedron Lett.* 2005, 46, 5889–5892; (b) García, I.; Gómez, G.; Teijeira, M.; Terán, C.; Fall, Y. *Tetrahedron Lett.* 2006, 47, 1333– 1335; (c) Canoa, P.; Pérez, M.; Covelo, B.; Gómez, G.; Fall, Y. *Tetrahedron Lett.* 2007, 48, 3441–3443.
- All new compounds exhibited satisfactory ¹H and ¹³C NMR, analytical, and/or high resolution mass spectral data.
- (a) Cram, D. J.; Allinger, N. L. J. Am. Chem. Soc. 1956, 78, 2518– 2524; (b) Kocienski, P. J.; Brown, R. C.; Pommier, A.; Procter, M.; Schmidt, B. J. Chem. Soc., Perkin Trans. 1 1998, 9–40.
- 10. Selected data for compound **3**: White solid. mp: 139 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 3.96 (d, 1H, J = 4.43 Hz, CH–C6), 3.85 (d, 1H, J = 9.88 Hz, CH₂–C3), 3.33 (s, 3H, CH₃OMe), 3.32 (m, 1H, CH₂–C3), 3.08 (m, 1H, CH–C8), 3.03 (m, 1H, CH–C1), 2.85 (dd, 1H, J = 4.39 Hz, J = 17.32 Hz, CH₂–C10), 2.74 (dd, 1H, J = 4.20 Hz, J = 13.10 Hz, CH₂–C13), 2.35 (dd, 1H, J = 9.81 Hz, J = 17.36 Hz, CH₂–C10), 1.99 (m, 1H, CH₂–C5), 1.66 (m, 2H, CH₂–C4), 1.59 (m, 1H, CH₂–C13), 1.37 (m, 1H, CH₂–C5); ¹³C NMR (CDCl3), δ : 175.26 (CO), 106.67 (C-9), 76.69 (CH-6), 75.13 (CH-1), 73.85 (CH-8), 67.93 (CH₂-3), 49.80 (CH₃OMe), 36.32 (CH₂-10), 33.90 (CH₂-13), 28.66 (CH₂-5), 25.11 (CH₂-4); HRMS: calcd for C₈H₁₃O₃, 157.0846; found, 157.0843.
- 11. Selected data for compound 4: yellow solid. mp: 120 °C; ¹H NMR (CDCl₃, 300 MHz), δ : 4.45 (t, 1H, J = 8.77 Hz, CH–C1), 3.90 (d, 1H, J = 12.25 Hz, CH₂–C3), 3.43 (s, 3H, CH₃OMe), 3.39 (m, 1H, CH₂–C3), 3.31 (m, 1H, CH–C8), 3.14 (m, 1H, CH–C6), 2.90 (dd, 1H, J = 9.63 Hz, J = 17.43 Hz, CH₂–C13), 2.73 (m, 1H, CH₂–C13), 2.67 (m, 1H, CH₂–C10), 2.00 (m, 1H, CH₂–C5), 1.74 (m, 2H, CH₂–C4), 1.70 (m, 1H, CH₂–C10), 1.48 (m, 1H, CH₂–C5); ¹³C NMR (CDCl₃), d: 170.94 (CO), 107.24 (C-9), 73.87 (CH-6), 73.67 (CH-1), 71.14 (CH-8), 67.93 (CH₂-3), 50.93 (CH₃OMe), 35.06 (CH₂-10), 32.15 (CH₂-13), 28.91 (CH₂-5), 25.29 (CH₂-4); calcd for C₈H₁₃O₃, 157.0857; found, 157.0850.
- 12. Trost, B. M.; Rhee, Y. H. Org. Lett. 2004, 6, 4311-4313.